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K-FOLD DIVISOR FUNCTIONS AND ∆k

For an integer k ≥ 2, define

dk(n) =
∑

n1···nk=n

1

and

∆k(x) =
∑
n≤x

dk(n) − Ress=1

(ζk(s)xs

s

)
.

The Piltz divisor problem is to determine the smallest αk such that

∆k(x) � xαk+ε

for all ε > 0. Titchmarsh conjectured αk = 1
2 − 1

2k.

TONG’S INTERMEDIATE VALUE THEOREM

Tong(1955) provided the existence of constants ak and bk such that |y| ≤ akX
1
2− 1

2k,
then

∆k(x) = y for some x ∈ [X, X + bkX
1−1

k ].

Figure 1. Tong’s intermediate value theorem

Heath-Brown and Tsang(1994) showed that for some c > 0, there are at least

�
√

X(log X)5 disjoint subintervals of [X,2X], each of length c
√

X(log X)−5, such
that ∆2(x)| � x1/4 for all x in any of the subintervals. In particular, one can think

of Heath-Brown’s and Tsang’s result saying in the case of k = 2 that Tong’s is best

possible up to some log factors.

Figure 2. Intervals with no sign changes

RESULTS

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let k ≥ 3 be an integer. There are at least �
X

1
k(k−1)−ε

disjoint subintervals of [X, 2X ], each of length X1−1
k−ε, such that |∆k(x)| �

x
1
2− 1

2k for all x in any of the subintervals. In particular, ∆k(x) does not change sign in

any of the subintervals.

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis and let k ≥ 3 be an integer. There are at least �
X

1
k(k−1)−ε

disjoint subintervals of [X, 2X ], each of length X1−1
k(log X)−k2−2, such that

|∆k(x)| � x
1
2− 1

2k for all x in any of the subintervals. In particular, ∆k(x) does not change
sign in any of the subintervals.

DETECTION METHOD OF HEATH-BROWNAND TSANG

To detect intervals without sign changes we will consider the following set:

S :=
{

x ∈ [X, 2X ] : |∆k(x)|2 > sup
0≤h≤H

|∆k(x + h) − ∆k(x)|2
}

.

Note that if x ∈ S, then ∆k(x + h) has the same sign as ∆k(x) for all h ≤ H. By
the definition of S and Cauchy-Schwarz,∫ 2X

X

|∆k(x)|2 dx −
∫ 2X

X

sup
0≤h≤H

|∆k(x + h) − ∆k(x)|2 dx

≤
∫

S

(
|∆k(x)|2 − sup

0≤h≤H
|∆k(x + h) − ∆k(x)|2

)
dx

≤
∫

S

|∆k(x)|2 dx

≤ meas(S)1/2

(∫ 2X

X

|∆k(x)|4 dx

)1/2

.

Hence, to get a lower bound for meas(S),we need a lower bound for the second

moment ∆k and upper bounds for the fourth moment of ∆k and the variance of

sums of dk(n) in short intervals.

MEAN SQUARE DIFFERENCE OF ∆k

Theorem(Baluyot and C.)

Assume the Lindelöf Hypothesis. If k ≥ 3 is an integer and 1 ≤ h ≤ X , then∫ 2X

X

(
∆k(x + h) − ∆k(x)

)2
dx � X1+εh.

Theorem(Baluyot and C.)

Assume the Riemann Hypothesis. If k ≥ 3 is an integer and 1 ≤ h ≤ X , then∫ 2X

X

(
∆k(x + h) − ∆k(x)

)2
dx � Xh logk2

(
X

h

)
.

Outline of proof:

View ∆k as a Fourier Transform:

∆k(x) =
∑
n≤x

dk(n) − Res
s=1

(
ζk(s)xs

s

)
= lim

Y →∞

1
2πi

∫ 1
2+iY

1
2−iY

xs

s
ζk(s) ds.

Apply Plancherel’s theorem∫ ∞

0

∣∣∣∣∆k

(
x + x

T

)
− ∆k(x)

∣∣∣∣2 dx

x2 = 1
π

∫ ∞

0

∣∣∣∣∣
(

(1 + 1
T )(1

2+it) − 1
1
2 + it

)
ζk(1

2 + it)

∣∣∣∣∣
2

dt � 1
T 1−ε

.

Truncate the integral to see∫ 2X

X

∣∣∣∣∆k

(
x + x

T

)
− ∆k(x)

∣∣∣∣2 dx � X2

T 1−ε
.

Apply a lemma due to Saffari and Vaughn(1977):∫ X

X/2
|∆k(x + h) − ∆k(x)|2 dx ≤ 2X

h

∫ 8h/X

0

∫ X

0
|∆k(x + βx) − ∆k(x)|2 dx dβ.

THE FOURTH MOMENTOF ∆k

Theorem(Baluyot and C.)

Assume the Lindelöf Hypothesis. If k ≥ 3 is an integer, then∫ 2X

X

(
∆k(x)

)4
dx � X3− 1

k−1+ε.

Outline of proof:

We apply a formulation of ∆k due to Lester(2016). Let 0 ≤ δ < 1/2 be fixed. If

x, T ≥ 1 and 1 ≤ Y ≤ min{x, T},

∆k(x) =x
1
2− 1

2k

π
√

k

∑
n≤1

x

(
Y
2π

)k

dk(n)
n

1
2+ 1

2k

cos
(

2πk(nx)1/k + (k − 3)π
4

)
+ Re

{
1
πi

∫ 1
2−δ+iT

1
2−δ+iY

ζk(s)x
s

s
ds

}
+ E = Q + I + E.

Apply Tsang’s(1991) method of using Voronoi summation + Erdös-Turán

inequality to bound the third and fourth moment of ∆2.

Apply Lester’s(2016) method together with the Riesz-Thorin Interpolation

Theorem for the I term.
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