Sign changes of the error term of the Piltz divisor problem

Cruz Castillo, joint work with Siegfred Baluyot

Mathematics Department, College of Liberal Arts and Scienes, University of Illinois at Urbana-Champaign

K-FOLD DIVISOR FUNCTIONS AND Δ_{k}
For an integer $k \geq 2$, define $\quad d_{k}(n)=\sum_{n_{1} \cdot n_{k}=n} 1$
and

$$
\Delta_{k}(x)=\sum_{n \leq x} d_{k}(n)-\operatorname{ReS}_{s=1}\left(\frac{\zeta^{k}(s) x^{s}}{s}\right) .
$$

The Piltz divisor problem is to determine the smallest α_{k} such that

$$
\Delta_{k}(x) \ll x^{a_{k}+\epsilon}
$$

for all $\epsilon>0$. Titchmarsh conjectured $\alpha_{k}=\frac{1}{2}-\frac{1}{2 k}$
TONG'S INTERMEDIATE VALUE THEOREM
Tong(1955) provided the existence of constants a_{k} and b_{k} such that $|y| \leq a_{k} X^{\frac{1}{2}-\frac{1}{2 k}}$, Tong(
then

Figure 1. Tong's intermediate value theorem
Heath-Brown and Tsang(1994) showed that for some $c>0$, there are at least $\gg \sqrt{X}(\log X)^{5}$ disjoint subintervals of $[\mathrm{X}, 2 \mathrm{X}]$, each of length $c \sqrt{X}(\log X)^{-5}$, such that $\Delta_{2}(x) \mid \gg x^{1 / 4}$ for all x in any of the subintervals. In particular, one can think of Heath-Brown's and Tsang's result saying in the case of $k=2$ that Tong's is best possible up to some log factors.

RESULTS

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let $k \geq 3$ be an integer. There are at least \gg $X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of $[X, 2 X]$, each of length $X^{1-\frac{1}{k}-\varepsilon}$, such that $\left|\Delta_{k}(x)\right| \gg$ $x^{\frac{1}{2}-\frac{1}{2 k}}$ for all x in any of the subintervals. In particular, $\Delta_{k}(x)$ does not change sign in any of the subintervals.

Theorem (Baluyot and C.

Assume the Riemann Hypothesis and let $k \geq 3$ be an integer. There are at least \gg $X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of $[X, 2 X]$, each of length $X^{1-\frac{1}{k}}(\log X)^{-k^{2}-2}$, such that $\left|\Delta_{k}(x)\right| \gg x^{\frac{1}{2}-\frac{1}{2 k}}$ for all x in any of the subintervals. In particular, $\Delta_{k}(x)$ does not change sign in any of the subintervals.

Who(year)	Assumption	\mathbf{k}		H
Tong(1955)	None	≥ 2	$X^{1-\frac{1}{k}}$	Yes
Heath- Brown and Tsang(1994)	None	$=2$	$\sqrt{X}(\log X)^{-5}$	No
Cao, Tanigawa and Zhai(2016)	None	$=3$	$X^{\frac{1}{2}-\varepsilon}$	No
CTZ(2016)	LH	$=3$	$X^{\frac{2}{3}-\varepsilon}$	No
Baluyot and C.(2023)	LH	≥ 3	$X^{1-\frac{1}{k}-\varepsilon}$	No
BC(2023)	RH	≥ 3	$X^{1-\frac{1}{k}}(\log X)^{-k^{2}-2}$	No

DETECTION METHOD OF HEATH-BROWN AND TSANG

To detect intervals without sign changes we will consider the following set:

$$
S:=\left\{x \in[X, 2 X]:\left|\Delta_{k}(x)\right|^{2}>\sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2}\right\} .
$$

Note that if $x \in S$, then $\Delta_{k}(x+h)$ has the same sign as $\Delta_{k}(x)$ for all $h \leq H$. By the definition of S and Cauchy-Schwarz,

$$
\begin{aligned}
& \int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{2} d x-\int_{X}^{2 X} \sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2} d x \\
& \leq \int_{S}\left(\left|\Delta_{k}(x)\right|^{2}-\sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2}\right) d x \\
& \leq \int_{S}\left|\Delta_{k}(x)\right|^{2} d x \\
& \leq \operatorname{meas}(S)^{1 / 2}\left(\int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{4} d x\right)^{1 / 2} .
\end{aligned}
$$

Hence, to get a lower bound for meas(S), we need a lower bound for the second moment Δ_{k} and upper bounds for the fourth moment of Δ_{k} and the variance of sums of $d_{k}(n)$ in short intervals.

MEAN SQUARE DIFFERENCE OF \triangle

Theorem(Baluyot and C.

Assume the Lindelöf Hypothesis. If $k \geq 3$ is an integer and $1 \leq h \leq X$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X^{1+\varepsilon} h .
$$

Theorem(Baluyot and C.)
Assume the Riemann Hypothesis. If $k \geq 3$ is an integer and $1 \leq h \leq X$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X h \log ^{k^{2}}\left(\frac{X}{h}\right) .
$$

Outline of proof:

- View Δ_{k} as a Fourier Transform:

$$
\Delta_{k}(x)=\sum_{n \leq x} d_{k}(n)-\underset{s=1}{\operatorname{Res}}\left(\frac{\zeta^{k}(s) x^{s}}{s}\right)=\lim _{Y \rightarrow \infty} \frac{1}{2 \pi i} \int_{\frac{1}{2}-i Y}^{\frac{1}{2}+i Y} \frac{x^{s}}{s} \zeta^{k}(s) d s .
$$

- Apply Plancherel's theorem
$\int_{0}^{\infty}\left|\Delta_{k}\left(x+\frac{x}{T}\right)-\Delta_{k}(x)\right|^{2} \frac{d x}{x^{2}}=\frac{1}{\pi} \int_{0}^{\infty}\left|\left(\frac{\left(1+\frac{1}{T}\right)^{\left(\frac{1}{2}+i t\right)}-1}{\frac{1}{2}+i t}\right) \zeta^{k}\left(\frac{1}{2}+i t\right)\right|^{2} d t \ll \frac{1}{T^{1-\varepsilon}}$
- Truncate the integral to see

$$
\int_{X}^{2 X}\left|\Delta_{k}\left(x+\frac{x}{T}\right)-\Delta_{k}(x)\right|^{2} d x \ll \frac{X^{2}}{T^{1-\varepsilon}} .
$$

- Apply a lemma due to Saffari and Vaughn(1977):

$$
\int_{X / 2}^{X}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2} d x \leq \frac{2 X}{h} \int_{0}^{8 h / X} \int_{0}^{X}\left|\Delta_{k}(x+\beta x)-\Delta_{k}(x)\right|^{2} d x d \beta .
$$

THE FOURTH MOMENT OF Δ_{k}

Theorem(Baluyot and C.)

Assume the Lindelöf Hypothesis. If $k \geq 3$ is an integer, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x)\right)^{4} d x \ll X^{3-\frac{1}{k-1}+\varepsilon} .
$$

Outline of proof:
We apply a formulation of Δ_{k} due to Lester(2016). Let $0 \leq \delta<1 / 2$ be fixed. If $x, T \geq 1$ and $1 \leq Y \leq \min \{x, T\}$,

$$
\Delta_{k}(x)=\frac{x^{\frac{1}{2}-\frac{1}{2 k}}}{\pi \sqrt{k}} \sum_{n \leq \frac{1}{x}\left(\frac{Y}{2 \pi}\right)^{k}} \frac{d_{k}(n)}{n^{\frac{1}{2}+\frac{+}{2 k}}} \cos \left(2 \pi k(n x)^{1 / k}+\frac{(k-3) \pi}{4}\right)+\operatorname{Re}\left\{\frac{1}{\pi i} \int_{\frac{1}{2}-\delta+i Y}^{\frac{1}{2}-\delta+i T} \zeta^{k}(s) \frac{x^{s}}{s} d s\right\}
$$

$$
+E=Q+I+E
$$

- Apply Tsang's(1991) method of using Voronoi summation + Erdös-Turán inequality to bound the third and fourth moment of Δ_{2}.
- Apply Lester's(2016) method together with the Riesz-Thorin Interpolation Theorem for the I term

