Sign changes of the error term in the Piltz divisor problem

Cruz Castillo
University of Illinois at Urbana-Champaign
joint work with Siegfred Baluyot

UIUC Number Theory Seminar
2 May 2023

The Piltz divisor problem

- For an integer $k \geq 2$, let $d_{k}(n)=\sum_{n_{1} \cdots n_{k}=n} 1$.

The Piltz divisor problem

- For an integer $k \geq 2$, let $d_{k}(n)=\sum_{n_{1} \cdots n_{k}=n} 1$.
- $\sum_{n \leq x} d_{k}(n)=\underset{s=1}{\operatorname{Res}}\left(\frac{\zeta^{k}(s) x^{s}}{s}\right)+\Delta_{k}(x)=x P_{k}(\log x)+\Delta_{k}(x)$. for some polynomial P_{k} of degree $k-1$.

The Piltz divisor problem

- For an integer $k \geq 2$, let $d_{k}(n)=\sum_{n_{1} \cdots n_{k}=n} 1$.
$\bullet \sum_{n \leq x} d_{k}(n)=\operatorname{Res}_{s=1}\left(\frac{\zeta^{k}(s) x^{s}}{s}\right)+\Delta_{k}(x)=x P_{k}(\log x)+\Delta_{k}(x)$.
for some polynomial P_{k} of degree $k-1$.
- The Piltz divisor problem is to determine the smallest α_{k} such that

$$
\Delta_{k}(x) \ll x^{\alpha_{k}+\varepsilon}
$$

for all $\varepsilon>0$.
Titchmarsh conjectured $\alpha_{k}=\gamma_{k}:=\frac{1}{2}-\frac{1}{2 k}$.

Progress on Dirichlet/Piltz Divisor Problem

Who(Year)	Result
Dirichlet(1849)	$\alpha_{2} \leq \frac{1}{2}$
Huxley(2003)	$\alpha_{2} \leq \frac{131}{416} \approx .3149$
Kolesnik(1981)	$\alpha_{3} \leq \frac{43}{96} \approx .4479$
Ivić(1980's)	$\alpha_{k} \leq \frac{3}{4}-\frac{1}{k}$,
for 3 $\leq k \leq 8$.	

Size and fluctuations of $\Delta_{k}(x)$

- Soundararajan (2003), building on ideas of Hafner, has shown

$$
\Delta_{k}(x)=\Omega\left((x \log x)^{\frac{1}{2}-\frac{1}{2 k}}(\log \log x)^{\frac{k+1}{2 k}\left(k^{2 k /(k+1)}-1\right)}(\log \log \log x)^{-\frac{1}{2}-\frac{k-1}{4 k}}\right) .
$$

Size and fluctuations of $\Delta_{k}(x)$

- Soundararajan (2003), building on ideas of Hafner, has shown

$$
\Delta_{k}(x)=\Omega\left((x \log x)^{\frac{1}{2}-\frac{1}{2 k}}(\log \log x)^{\frac{k+1}{2 k}\left(k^{2 k /(k+1)}-1\right)}(\log \log \log x)^{-\frac{1}{2}-\frac{k-1}{4 k}}\right) .
$$

- Tong (1955) proved the existence of constants a_{k} and b_{k} such that if $|y| \leq a_{k} X^{\frac{1}{2}-\frac{1}{2 k}}$, then

$$
\Delta_{k}(x)=y \quad \text { for some } x \in\left[X, X+b_{k} X^{1-\frac{1}{k}}\right] .
$$

Size and fluctuations of $\Delta_{k}(x)$

- Soundararajan (2003), building on ideas of Hafner, has shown

$$
\Delta_{k}(x)=\Omega\left((x \log x)^{\frac{1}{2}-\frac{1}{2 k}}(\log \log x)^{\frac{k+1}{2 k}\left(k^{2 k /(k+1)}-1\right)}(\log \log \log x)^{-\frac{1}{2}-\frac{k-1}{4 k}}\right) .
$$

- Tong (1955) proved the existence of constants a_{k} and b_{k} such that if $|y| \leq a_{k} X^{\frac{1}{2}-\frac{1}{2 k}}$, then

$$
\Delta_{k}(x)=y \quad \text { for some } x \in\left[X, X+b_{k} X^{1-\frac{1}{k}}\right] .
$$

- In particular, $\Delta_{k}(x)$ changes sign at least once in the interval $\left[X, X+b_{k} X^{1-\frac{1}{k}}\right]$. Question: Is this best possible?

Intervals with no sign changes of $\Delta_{k}(x)$

Let X be a large parameter.

- Tong (1955): $\Delta_{k}(x)$ changes sign in $\left[X, X+b_{k} X^{1-\frac{1}{k}}\right]$
- Heath-Brown and Tsang (1994): For some constant $c>0$, there are at least $\gg \sqrt{X}(\log X)^{5}$ disjoint subintervals of $[X, 2 X]$, each of length $c \sqrt{X}(\log X)^{-5}$, such that $\left|\Delta_{2}(x)\right| \gg x^{1 / 4}$ for all x in any of the subintervals. In particular, $\Delta_{2}(x)$ does not change sign in any of the subintervals.

Intervals with no sign changes of $\Delta_{k}(x)$

Let X be a large parameter.

- Tong (1955): $\Delta_{k}(x)$ changes sign in $\left[X, X+b_{k} X^{1-\frac{1}{k}}\right]$
- Heath-Brown and Tsang (1994): For some constant $c>0$, there are at least $\gg \sqrt{X}(\log X)^{5}$ disjoint subintervals of $[X, 2 X]$, each of length $c \sqrt{X}(\log X)^{-5}$, such that $\left|\Delta_{2}(x)\right| \gg x^{1 / 4}$ for all x in any of the subintervals. In particular, $\Delta_{2}(x)$ does not change sign in any of the subintervals.
- Cao, Tanigawa, and Zhai(2016): For some constant $c>0$, there are at least $\gg X^{1 / 2-\varepsilon}$ disjoint subintervals of $[X, 2 X]$, each of length $X^{1 / 2-\varepsilon}$, such that $\left|\Delta_{3}(x)\right| \geq c x^{1 / 3}$ for all x in any of the subintervals. In particular, $\Delta_{3}(x)$ does not change sign in any of the subintervals. Assuming Lindelöf, there are at least $\gg X^{1 / 3-\varepsilon}$ of disjoint intervals of length $X^{2 / 3-\varepsilon}$.

Intervals with no sign changes of $\Delta_{k}(x)$

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let $k \geq 3$ be an integer. There are at least $\gg X^{\frac{1}{(k-1)}-\varepsilon}$ disjoint subintervals of $[X, 2 X]$, each of length $X^{1-\frac{1}{k}-\varepsilon}$, such that $\left|\Delta_{k}(x)\right| \gg x^{\frac{1}{2}-\frac{1}{2 k}}$ for all x in any of the subintervals. In particular, $\Delta_{k}(x)$ does not change sign in any of the subintervals.

Intervals with no sign changes of $\Delta_{k}(x)$

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let $k \geq 3$ be an integer. There are at least $\gg X^{\frac{1}{(k-1)}-\varepsilon}$ disjoint subintervals of $[X, 2 X]$, each of length $X^{1-\frac{1}{k}-\varepsilon}$, such that $\left|\Delta_{k}(x)\right| \gg x^{\frac{1}{2}-\frac{1}{2 k}}$ for all x in any of the subintervals. In particular, $\Delta_{k}(x)$ does not change sign in any of the subintervals.

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis and let $k \geq 3$ be an integer. There are at least $\gg X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of $[X, 2 X]$, each of length $X^{1-\frac{1}{k}}(\log X)^{-k^{2}-2}$, such that $\left|\Delta_{k}(x)\right| \gg x^{\frac{1}{2}-\frac{1}{2 k}}$ for all x in any of the subintervals. In particular, $\Delta_{k}(x)$ does not change sign in any of the subintervals.

Intervals with no sign changes of $\Delta_{k}(x)$

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let $k \geq 3$ be an integer. There are at least $\gg X^{\frac{1}{(k-1)}-\varepsilon}$ disjoint subintervals of $[X, 2 X]$, each of length $X^{1-\frac{1}{k}-\varepsilon}$, such that $\left|\Delta_{k}(x)\right| \gg x^{\frac{1}{2}-\frac{1}{2 k}}$ for all x in any of the subintervals. In particular, $\Delta_{k}(x)$ does not change sign in any of the subintervals.

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis and let $k \geq 3$ be an integer. There are at least $\gg X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of $[X, 2 X]$, each of length $X^{1-\frac{1}{k}}(\log X)^{-k^{2}-2}$, such that $\left|\Delta_{k}(x)\right| \gg x^{\frac{1}{2}-\frac{1}{2 k}}$ for all x in any of the subintervals. In particular, $\Delta_{k}(x)$ does not change sign in any of the subintervals.

Remark

For $k=3$ in the first theorem we recover the length of disjoint subintervals proved by Cao, Tanigawa, and Zhai(2016); however, we do not recover the lower bound on the number of subintervals.

Intervals with no sign changes

Who(year)	Assumption	k	H	Sign change
Tong(1955)	None	≥ 2	$X^{1-\frac{1}{k}}$	Yes
Heath- Brown and Tsang(1994)	None	$=2$	$\sqrt{X}(\log X)^{-5}$	No
Cao, Tanigawa and Zhai(2016)	None	$=3$		
CTZ(2016)	LH	$=3$	$X^{\frac{1}{2}-\varepsilon}$	No
Baluyot and C.(2023)	LH	≥ 3	$X^{\frac{2}{3}-\varepsilon}$	No
BC(2023)	RH	≥ 3	$X^{1-\frac{1}{k}}(\log X)^{-k^{2}-2}$	No

The detection method of Heath-Brown and Tsang

Let $S:=\left\{x \in[X, 2 X]:\left|\Delta_{k}(x)\right|^{2}>\sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2}\right\}$ If $x \in S$, then $\Delta_{k}(x+h)$ has the same sign as $\Delta_{k}(x)$ for all $h \leq H$. We use the definition of S and Cauchy-Schwarz to deduce that

The detection method of Heath-Brown and Tsang

Let $S:=\left\{x \in[X, 2 X]:\left|\Delta_{k}(x)\right|^{2}>\sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2}\right\}$ If $x \in S$, then $\Delta_{k}(x+h)$ has the same sign as $\Delta_{k}(x)$ for all $h \leq H$. We use the definition of S and Cauchy-Schwarz to deduce that

$$
\begin{aligned}
& \int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{2} d x-\int_{X}^{2 X} \sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2} d x \\
& \leq \int_{S}\left(\left|\Delta_{k}(x)\right|^{2}-\sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2}\right) d x \\
& \leq \int_{S}\left|\Delta_{k}(x)\right|^{2} d x \\
& \leq \operatorname{meas}(S)^{1 / 2}\left(\int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{4} d x\right)^{1 / 2}
\end{aligned}
$$

The detection method of Heath-Brown and Tsang

Let $S:=\left\{x \in[X, 2 X]:\left|\Delta_{k}(x)\right|^{2}>\sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2}\right\}$ If $x \in S$, then $\Delta_{k}(x+h)$ has the same sign as $\Delta_{k}(x)$ for all $h \leq H$. We use the definition of S and Cauchy-Schwarz to deduce that

$$
\begin{aligned}
& \int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{2} d x-\int_{X}^{2 X} \sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2} d x \\
& \leq \int_{S}\left(\left|\Delta_{k}(x)\right|^{2}-\sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2}\right) d x \\
& \leq \int_{S}\left|\Delta_{k}(x)\right|^{2} d x \\
& \leq \operatorname{meas}(S)^{1 / 2}\left(\int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{4} d x\right)^{1 / 2}
\end{aligned}
$$

To get a lower bound for meas (S), we need a lower bound for the second moment of Δ_{k} and upper bounds for the fourth moment of Δ_{k} and the variance of sums of $d_{k}(n)$ in short intervals.

The second moment of Δ_{k}

- Cramér (1922): $\int_{0}^{X}\left(\Delta_{2}(x)\right)^{2} d x \sim A_{2} X^{3 / 2}$ for some constant A_{2}.

The second moment of Δ_{k}

- Cramér (1922): $\int_{0}^{X}\left(\Delta_{2}(x)\right)^{2} d x \sim A_{2} X^{3 / 2}$ for some constant A_{2}.
- Tong (1956): If $k \geq 3$ is an integer, then for some constant A_{k},

$$
\int_{0}^{X}\left(\Delta_{k}(x)\right)^{2} d x=A_{k} X^{2-\frac{1}{k}}+O\left(X^{2-\frac{3-4 \sigma_{k}}{2 k\left(1-\sigma_{k}\right)-1}+\varepsilon}\right)
$$

where $\sigma_{k} \geq \frac{1}{2}$ satisfies

$$
\int_{0}^{T}\left|\zeta\left(\sigma_{k}+i t\right)\right|^{2 k} d t \ll T^{1+\varepsilon} .
$$

In particular, the Lindelöf Hypothesis implies an asymptotic formula.

The variance of sums of $d_{2}(n)$ in short intervals

- Jutila (1984): If $X^{\varepsilon} \ll h \leq \frac{1}{2} \sqrt{X}$, then

$$
\int_{X}^{2 X}\left(\Delta_{2}(x+h)-\Delta_{2}(x)\right)^{2} d x \ll X h \log ^{3}\left(\frac{\sqrt{X}}{h}\right)
$$

The variance of sums of $d_{2}(n)$ in short intervals

- Jutila (1984): If $X^{\varepsilon} \ll h \leq \frac{1}{2} \sqrt{X}$, then

$$
\int_{X}^{2 X}\left(\Delta_{2}(x+h)-\Delta_{2}(x)\right)^{2} d x \ll X h \log ^{3}\left(\frac{\sqrt{X}}{h}\right)
$$

- Ivić (2009): If $1 \ll h \leq \frac{1}{2} \sqrt{X}$, then for some constants c_{0}, \ldots, c_{3},

$$
\begin{aligned}
& \int_{X}^{2 X}\left(\Delta_{2}(x+h)-\Delta_{2}(x)\right)^{2} d x=X h \sum_{j=0}^{3} c_{j} \log ^{j}\left(\frac{\sqrt{X}}{h}\right) \\
&+O\left(X^{\frac{1}{2}+\varepsilon} h^{2}+X^{1+\varepsilon} h^{1 / 2}\right)
\end{aligned}
$$

Note that this is an asymptotic formula for $X^{\varepsilon} \ll h \ll X^{\frac{1}{2}-\varepsilon}$.

The variance of sums of $d_{k}(n)$ in short intervals

Let $k \geq 3$, and let $\sigma_{k} \geq \frac{1}{2}$ satisfy $\int_{0}^{T}\left|\zeta\left(\sigma_{k}+i t\right)\right|^{2 k} d t \ll T^{1+\varepsilon}$.

- Ivić (2009): If $\frac{1}{2}<\sigma_{k}<1,2 \sigma_{k}-1<\theta<1$, and $X^{\theta} \leq h \ll X^{1-\varepsilon}$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X^{1-\frac{1}{3}\left(\theta-2 \sigma_{k}+1\right)+\varepsilon} h^{2}
$$

The variance of sums of $d_{k}(n)$ in short intervals

Let $k \geq 3$, and let $\sigma_{k} \geq \frac{1}{2}$ satisfy $\int_{0}^{T}\left|\zeta\left(\sigma_{k}+i t\right)\right|^{2 k} d t \ll T^{1+\varepsilon}$.

- Ivić (2009): If $\frac{1}{2}<\sigma_{k}<1,2 \sigma_{k}-1<\theta<1$, and $X^{\theta} \leq h \ll X^{1-\varepsilon}$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X^{1-\frac{1}{3}\left(\theta-2 \sigma_{k}+1\right)+\varepsilon} h^{2}
$$

If $\sigma_{k}=\frac{1}{2}$ and $X^{\varepsilon} \ll h \ll X^{1-\varepsilon}$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X^{1+\varepsilon} h^{4 / 3}
$$

Cao,Tanigawa, and Zhai(2016)

- Unconditionally, for $h \leq X$,

$$
\int_{X}^{2 X}\left(\Delta_{3}(x+h)-\Delta_{3}(x)\right)^{2} d x \ll X^{\varepsilon}\left(X h+X^{4 / 3} h^{1 / 3}+X^{14 / 9}\right)
$$

Cao,Tanigawa, and Zhai(2016)

- Unconditionally, for $h \leq X$,

$$
\int_{X}^{2 X}\left(\Delta_{3}(x+h)-\Delta_{3}(x)\right)^{2} d x \ll X^{\varepsilon}\left(X h+X^{4 / 3} h^{1 / 3}+X^{14 / 9}\right)
$$

- Assume LH. For $h \leq X$

$$
\int_{X}^{2 x}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X^{\varepsilon}\left(X h+X^{2-3 / k}\right)
$$

Lester (2016)

- Unconditionally, if $2 \leq L \ll X^{\frac{1}{12}-\varepsilon}$, then for some constant C_{3}, $\int_{X}^{2 x}\left(\Delta_{3}\left(x+\frac{x^{2 / 3}}{L}\right)-\Delta_{3}(x)\right)^{2} d x=C_{3} \frac{X^{5 / 3}}{L}(\log L)^{8}\left(1+O\left(\frac{1}{\log L}\right)\right)$.

Lester (2016)

- Unconditionally, if $2 \leq L \ll X^{\frac{1}{12}-\varepsilon}$, then for some constant C_{3}, $\int_{X}^{2 X}\left(\Delta_{3}\left(x+\frac{x^{2 / 3}}{L}\right)-\Delta_{3}(x)\right)^{2} d x=C_{3} \frac{X^{5 / 3}}{L}(\log L)^{8}\left(1+O\left(\frac{1}{\log L}\right)\right)$.
- Assume LH. If $k \geq 3$ and $2 \leq L \ll X^{\frac{1}{k(k-1)}-\varepsilon}$, then for some constant C_{k},
$\int_{X}^{2 X}\left(\Delta_{k}\left(x+\frac{x^{1-\frac{1}{k}}}{L}\right)-\Delta_{k}(x)\right)^{2} d x=C_{k} \frac{X^{2-\frac{1}{k}}}{L}(\log L)^{k^{2}-1}\left(1+O\left(\frac{1}{\log L}\right)\right)$.

Lester (2016)

- Unconditionally, if $2 \leq L \ll X^{\frac{1}{12}-\varepsilon}$, then for some constant C_{3}, $\int_{X}^{2 x}\left(\Delta_{3}\left(x+\frac{x^{2 / 3}}{L}\right)-\Delta_{3}(x)\right)^{2} d x=C_{3} \frac{X^{5 / 3}}{L}(\log L)^{8}\left(1+O\left(\frac{1}{\log L}\right)\right)$.
- Assume LH. If $k \geq 3$ and $2 \leq L \ll X^{\frac{1}{k(k-1)}-\varepsilon}$, then for some constant C_{k},
$\int_{X}^{2 X}\left(\Delta_{k}\left(x+\frac{x^{1-\frac{1}{k}}}{L}\right)-\Delta_{k}(x)\right)^{2} d x=C_{k} \frac{X^{2-\frac{1}{k}}}{L}(\log L)^{k^{2}-1}\left(1+O\left(\frac{1}{\log L}\right)\right)$.
- Essentially, when $X^{1-\frac{1}{k-1}+\varepsilon} \ll h \leq \frac{1}{2} X^{1-\frac{1}{k}}$

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \sim C X h(\log X)^{k^{2}-1}
$$

The variance of sums of $d_{k}(n)$ in short intervals

- Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If $h=X^{\delta}$ with $0<\delta<1-\frac{1}{k}$ fixed, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \sim \mathcal{P}_{k}(\delta) X h(\log X)^{k^{2}-1}
$$

where $\mathcal{P}_{k}(\delta)$ is a (specific) piecewise polynomial function of δ of degree $k^{2}-1$.

The variance of sums of $d_{k}(n)$ in short intervals

- Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If $h=X^{\delta}$ with $0<\delta<1-\frac{1}{k}$ fixed, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \sim \mathcal{P}_{k}(\delta) X h(\log X)^{k^{2}-1}
$$

where $\mathcal{P}_{k}(\delta)$ is a (specific) piecewise polynomial function of δ of degree $k^{2}-1$.

- By examining the function field case, KRRR have found an interesting connection between this variance and averages of coefficients of characteristic polynomials of random matrices.

The variance of sums of $d_{k}(n)$ in short intervals

- Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If $h=X^{\delta}$ with $0<\delta<1-\frac{1}{k}$ fixed, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \sim \mathcal{P}_{k}(\delta) X h(\log X)^{k^{2}-1}
$$

where $\mathcal{P}_{k}(\delta)$ is a (specific) piecewise polynomial function of δ of degree $k^{2}-1$.

- By examining the function field case, KRRR have found an interesting connection between this variance and averages of coefficients of characteristic polynomials of random matrices.
- This agrees with Lester's theorem for $1-\frac{1}{k-1}<\delta<1-\frac{1}{k}$.

Mean square of Δ_{k} under LH

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If $k \geq 3$ is an integer and $0 \leq h \leq X$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X^{1+\varepsilon} h .
$$

Remark

Our result recovers Cao, Tanigawa, Zhai(2016) in the case of $k=3$, and improves on it for higher k.

- For $h \leq X$

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X^{\varepsilon}\left(X h+X^{2-3 / k}\right)
$$

Mean square of Δ_{k} under RH

We can use bounds for the moments of zeta due to Harper(2013).

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis. If $k \geq 3$ is an integer and $0 \leq h \leq X$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X h \log ^{k^{2}}\left(\frac{X}{h}\right) .
$$

Mean square of Δ_{k} under RH

We can use bounds for the moments of zeta due to Harper(2013).

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis. If $k \geq 3$ is an integer and $0 \leq h \leq X$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X h \log ^{k^{2}}\left(\frac{X}{h}\right) .
$$

Remark

This bound is one factor of $\log X$ larger than the conjectured order.

- Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If $h=X^{\delta}$ with $0<\delta<1-\frac{1}{k}$ fixed, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \sim \mathcal{P}_{k}(\delta) X h(\log X)^{k^{2}-1}
$$

Selberg's method

- Assume the LH. We use a method developed by Selberg in studying primes in short intervals. Then, we apply a lemma of Saffari and Vaughan.

Selberg's method

- Assume the LH. We use a method developed by Selberg in studying primes in short intervals. Then, we apply a lemma of Saffari and Vaughan.
- Apply Perron and then move the line of integration to $\operatorname{Re}(s)=\frac{1}{2}$:

$$
\Delta_{k}(x)=\sum_{n \leq x} d_{k}(n)-\operatorname{Res}_{s=1}\left(\frac{\zeta^{k}(s) x^{s}}{s}\right)=\lim _{Y \rightarrow \infty} \frac{1}{2 \pi i} \int_{\frac{1}{2}-i Y}^{\frac{1}{2}+i Y} \frac{x^{s}}{s} \zeta^{k}(s) d s
$$

We may thus view $\Delta_{k}(x)$ as a Fourier transform.

Selberg's method

- Assume the LH. We use a method developed by Selberg in studying primes in short intervals. Then, we apply a lemma of Saffari and Vaughan.
- Apply Perron and then move the line of integration to $\operatorname{Re}(s)=\frac{1}{2}$:

$$
\Delta_{k}(x)=\sum_{n \leq x} d_{k}(n)-\operatorname{Res}_{s=1}\left(\frac{\zeta^{k}(s) x^{s}}{s}\right)=\lim _{Y \rightarrow \infty} \frac{1}{2 \pi i} \int_{\frac{1}{2}-i Y}^{\frac{1}{2}+i Y} \frac{x^{s}}{s} \zeta^{k}(s) d s
$$

We may thus view $\Delta_{k}(x)$ as a Fourier transform.

- Apply Plancherel's theorem, make a change of variables:

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\Delta_{k}\left(x+\frac{x}{T}\right)-\Delta_{k}(x)\right|^{2} \frac{d x}{x^{2}} \\
& =\frac{1}{\pi} \int_{0}^{\infty}\left|\left(\frac{\left(1+\frac{1}{T}\right)^{\left(\frac{1}{2}+i t\right)}-1}{\frac{1}{2}+i t}\right) \zeta^{k}\left(\frac{1}{2}+i t\right)\right|^{2} d t \ll \frac{1}{T^{1-\varepsilon}}
\end{aligned}
$$

A lemma of Saffari and Vaughan

$$
\int_{X}^{2 X}\left|\Delta_{k}\left(x+\frac{x}{T}\right)-\Delta_{k}(x)\right|^{2} d x \ll \frac{X^{2}}{T^{1-\varepsilon}}
$$

A lemma of Saffari and Vaughan

$$
\int_{X}^{2 X}\left|\Delta_{k}\left(x+\frac{x}{T}\right)-\Delta_{k}(x)\right|^{2} d x \ll \frac{X^{2}}{T^{1-\varepsilon}}
$$

- Formulation due to Goldston and Suriajaya:

Lemma (Saffari and Vaughan(1977))

For any integrable function f , if $0 \leq h \leq X / 4$, then

$$
\int_{X / 2}^{X}|f(x+h)-f(x)|^{2} d x \leq \frac{2 X}{h} \int_{0}^{8 h / X} \int_{0}^{X}|f(x+\beta x)-f(x)|^{2} d x d \beta
$$

A lemma of Saffari and Vaughan

$$
\int_{X}^{2 X}\left|\Delta_{k}\left(x+\frac{x}{T}\right)-\Delta_{k}(x)\right|^{2} d x \ll \frac{X^{2}}{T^{1-\varepsilon}}
$$

- Formulation due to Goldston and Suriajaya:

Lemma (Saffari and Vaughan(1977))

For any integrable function f , if $0 \leq h \leq X / 4$, then

$$
\int_{X / 2}^{X}|f(x+h)-f(x)|^{2} d x \leq \frac{2 X}{h} \int_{0}^{8 h / X} \int_{0}^{X}|f(x+\beta x)-f(x)|^{2} d x d \beta
$$

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If $k \geq 3$ is an integer and $0 \leq h \leq X$, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x+h)-\Delta_{k}(x)\right)^{2} d x \ll X^{1+\varepsilon} h .
$$

The fourth moment of Δ_{k}

- Tsang (1992): for some constant A

$$
\int_{0}^{x}\left(\Delta_{2}(x)\right)^{4} d x \sim A X^{2}
$$

The fourth moment of Δ_{k}

- Tsang (1992): for some constant A

$$
\int_{0}^{X}\left(\Delta_{2}(x)\right)^{4} d x \sim A X^{2}
$$

- Ivić (1985):

$$
\int_{0}^{X}\left(\Delta_{3}(x)\right)^{4} d x \ll X^{\frac{235}{96}+\varepsilon} .
$$

The fourth moment of Δ_{k}

- Tsang (1992): for some constant A

$$
\int_{0}^{X}\left(\Delta_{2}(x)\right)^{4} d x \sim A X^{2}
$$

- Ivić (1985):

$$
\int_{0}^{X}\left(\Delta_{3}(x)\right)^{4} d x \ll X^{\frac{235}{96}+\varepsilon} .
$$

- Ivić and Zhai(2010):

$$
\int_{X}^{2 X}\left(\Delta_{k}\right)^{4}(x) d x \ll X^{\varepsilon}\left(X^{3-1 / k}+X^{(10 k-11) /(2 k+1)}\right)
$$

The fourth moment of Δ_{k}

Theorem (Baluyot and C.)
Assume the Lindelöf Hypothesis. If $k \geq 3$ is an integer, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x)\right)^{4} d x \ll X^{3-\frac{1}{k-1}+\varepsilon}
$$

The fourth moment of Δ_{k}

Theorem (Baluyot and C.)
Assume the Lindelöf Hypothesis. If $k \geq 3$ is an integer, then

$$
\int_{X}^{2 X}\left(\Delta_{k}(x)\right)^{4} d x \ll X^{3-\frac{1}{k-1}+\varepsilon}
$$

Remark

- We expect the true order to be $X^{3-\frac{2}{k}}$ times some power of $\log X$.
- The $k=3$ case is unconditional, but weaker than the theorem of Ivić (1985).

The detection method of Heath-Brown and Tsang

Recall that S is the set of $x \in[X, 2 X]$ such that Δ_{k} does not change sign on $[x, x+H]$.

The detection method of Heath-Brown and Tsang

Recall that S is the set of $x \in[X, 2 X]$ such that Δ_{k} does not change sign on $\left[x, x+H\right.$]. Assuming LH and setting $H=X^{1-1 / k-\varepsilon}$, we see

$$
\begin{aligned}
X^{2-1 / k} & \ll \int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{2} d x-\int_{X}^{2 X} \sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2} d x \\
& \leq \operatorname{meas}(S)^{1 / 2}\left(\int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{4} d x\right)^{1 / 2}
\end{aligned}
$$

The detection method of Heath-Brown and Tsang

Recall that S is the set of $x \in[X, 2 X]$ such that Δ_{k} does not change sign on $\left[x, x+H\right.$]. Assuming LH and setting $H=X^{1-1 / k-\varepsilon}$, we see

$$
\begin{aligned}
X^{2-1 / k} & \ll \int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{2} d x-\int_{X}^{2 X} \sup _{0 \leq h \leq H}\left|\Delta_{k}(x+h)-\Delta_{k}(x)\right|^{2} d x \\
& \leq \operatorname{meas}(S)^{1 / 2}\left(\int_{X}^{2 X}\left|\Delta_{k}(x)\right|^{4} d x\right)^{1 / 2}
\end{aligned}
$$

This gives there are at least $\gg X^{\frac{1}{((k-1)}-\varepsilon}$ disjoint subintervals of $[X, 2 X]$ of length $X^{1-1 / k-\varepsilon}$ with no sign changes.

Remark

The $2-1 / k$ in the lower bound for the measure of S is why Ivić and Zhai(2010) is insufficient for the theorem.

Thank you！

