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The Piltz divisor problem

o For an integer k > 2, let di(n) = Z 1.

ny---ng=n

D Z di(n) = I;{:els (Qh(’:)xs> + Ag(x) = xPi(log x) + A(x).

n<x
for some polynomial Py of degree k — 1.
e The Piltz divisor problem is to determine the smallest oy such that

Ag(x) < xte

for all e > 0.
Titchmarsh conjectured ax = 7% 1= 1 — 5.



Progress on Dirichlet/Piltz Divisor Problem
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a < -
2
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Kolesnik(1981) 43
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for3<k<8.
Richert{1960) a, <1 —ck™23
Ford(2002) 1{ 2 Z 5
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for large k.

Bellotti and Yang(2023) o <1 1889k_§
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for large k.
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Size and fluctuations of A(x)

e Soundararajan (2003), building on ideas of Hafner, has shown

Ag(x) = Q((X Iogx)%*ﬁ (loglog x)%(kw(k“)*l)(log log Iogx)*%*%).

e Tong (1955) proved the existence of constants ax and by such that if
ly| < ax Xz~ 2%, then

Ax(x) =y forsome x € [X,X + b X "k].

e In particular, Ak(x) changes sign at least once in the interval
[X, X + b X1~%]. Question: Is this best possible?
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e Heath-Brown and Tsang (1994): For some constant ¢ > 0, there are at
least > v/ X(log X)® disjoint subintervals of [X,2X], each of length
cvX(log X)~°, such that |Ay(x)| > x*/* for all x in any of the
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e Cao, Tanigawa, and Zhai(2016): For some constant ¢ > 0, there are at
least > X1/2~¢ disjoint subintervals of [X,2X], each of length X1/2—¢,
such that |As(x)| > cx!/3 for all x in any of the subintervals. In
particular, Asz(x) does not change sign in any of the subintervals.
Assuming Lindelof, there are at least > X1/3=¢ of disjoint intervals of
length X?2/3-¢,
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Theorem (Baluyot and C.)

Assume the Riemann Hypothesis and let k > 3 be an integer. There are
at least > XD —* disjoint subintervals of [X,2X], each of length
X1~k (log X)~K =2, such that |A(x)| > x2 =2 for all x in any of the
subintervals. In particular, Ax(x) does not change sign in any of the
subintervals.

For kK = 3 in the first theorem we recover the length of disjoint
subintervals proved by Cao, Tanigawa, and Zhai(2016); however, we do
not recover the lower bound on the number of subintervals.
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Intervals with no sign changes
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Let S := {x €1X,2X] 1 |Ak(x)]2> sup |Ax(x+h) — Ak(x)|2} If
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x € S, then Ay(x + h) has the same sign as Ay(x) for all h < H. We
use the definition of S and Cauchy-Schwarz to deduce that

2Xx 2X
/ |Ak(x)[? dx—/ sup |Ak(x 4+ h) — Ax(x)|? dx
X X 0<h<H

< [ (186007 = sup 18t ) = B 0

0<h<H

S/s Ag(x)|? dx

oX 1/2
< meas(5)1/2</ |Ak(x)|4dx>
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To get a lower bound for meas(S), we need a lower bound for the second
moment of A, and upper bounds for the fourth moment of Ay and the
variance of sums of dk(n) in short intervals.
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The second moment of A,

X
e Cramér (1922): / (Az(x))2 dx ~ Ay X3/2 for some constant Ay.

0
e Tong (1956): If k > 3 is an integer, then for some constant Ay,

X
/(Ak(x)) dx = A X" k+o( 7>*)
0

where o > % satisfies

,
/ |C(o + i)k dt < T,
0

In particular, the Lindelof Hypothesis implies an asymptotic formula.



The variance of sums of dy(n) in short intervals

e Jutila (1984): If X° < h < 1V/X, then
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The variance of sums of dy(n) in short intervals

o Jutila (1984): If X < h < %\/7( then
2X ) <
/ (Az(x + h) — Az(x)) dx < Xhlog® <\//:)

X

o lvi¢ (2009): If 1 < h < %\/)7 then for some constants ¢y, . . ., c3,

X

2x 2 3 (VX
/ (Az(x + h) — Az(X)) dx = Xhz% ¢jlog’ <h>
J:
+O(x%+sh2+xl+ahl/2)'

Note that this is an asymptotic formula for X¢ < h < X27¢.
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Let kK > 3, and let o > % satisfy / IC(ox + it) K dt < T,
0

e Ivi¢ (2009): If 3 <op < 1,204 —1<6 <1, and X! < h< X175,
then

2X )
/ (Ak(X +h)— Ak(x)) dx < X1—3(0—20k+1)+e 2.
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If ok = 1 and X® < h < X17¢, then

2X )
/ (Ak(x +h) - Ak(x)> dx < X1FEpt/3,
X
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e Unconditionally, if 2 < L <« Xﬁ’s, then for some constant Cj,

/:X (A3 (x + if) - A3(X))2 dx = C3Xi/3(|og L) <1 +0 (lO;L» .

e Assume LH. If k >3 and 2 < L « Xk(klflf‘s, then for some constant
Cx,

/:X (Ak (><+XIL_i )—Ak(x))2 dx = G X? (log L)<~ (1 +0 (IoéL)) :

e Essentially, when XI-wite « p < %Xl_%

/sz (Ak(x +h) — Ak(X)>2 dx ~ CXh(|0gX)k2_1



The variance of sums of di(n) in short intervals

e Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If
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e Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If
h=Xowith0<d<1— % fixed, then

/:X (Ak(X +h) — Ak(x))2 dx ~ P(0)Xh(log X)kz_l,

where Py (0) is a (specific) piecewise polynomial function of § of degree
k% — 1.

e By examining the function field case, KRRR have found an interesting
connection between this variance and averages of coefficients of
characteristic polynomials of random matrices.

e This agrees with Lester's theorem for 1 — ﬁ <i<1l-— %



Mean square of Ay under LH

Theorem (Baluyot and C.)
Assume the Lindelof Hypothesis. If k > 3 is an integer and 0 < h < X,
then

2X 5
/ (Bulx+ ) — Be()) dbe < XP+<h,
X

Our result recovers Cao, Tanigawa, Zhai(2016) in the case of k = 3, and
improves on it for higher k.

e For h< X

/QX(Ak(X + h) — Ap(x))?dx < XE(Xh+ X273/k),



Mean square of A, under RH

We can use bounds for the moments of zeta due to Harper(2013).
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then ax

2
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Mean square of A, under RH

We can use bounds for the moments of zeta due to Harper(2013).

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis. If k > 3 is an integer and 0 < h < X,

then

/2X (Ak(x +h) - Ak(x))2 dx < Xhlog" (f) .

X

This bound is one factor of log X larger than the conjectured order. )

e Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If
h=Xowith0<d<1— % fixed, then

/:X (Ak(x +h) - Ak(x))z dx ~ Pi(8)Xh(log X)' 7,
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Selberg's method

e Assume the LH. We use a method developed by Selberg in studying
primes in short intervals. Then, we apply a lemma of Saffari and
Vaughan.

o Apply Perron and then move the line of integration to Re(s) = %:
1L
B Ck(S)XS o 1 s +iY x5 .
Aklx) = ;d"(”) 5_615( s )TV o IV ¢'(s)ds

We may thus view A,(x) as a Fourier transform.
e Apply Plancherel’s theorem, make a change of variables:
% dx

/OOO’Ak (X+;) — Ag(x) ]

1ol g LyEn g N

1 .
§+It

dt <

Tl-¢"
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2X 2 2
/.

dx < Tie
e Formulation due to Goldston and Suriajaya:

Ay (x + %) — Ag(x)

Lemma (Saffari and Vaughan(1977))

For any integrable function f, if 0 < h < X/4, then

X 8h/X
/ If (x+h)—f(x)|2dx< 2X / IF(x + Bx) — F(x)|? dx dB.
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A lemma of Saffari and Vaughan

2X 2 2
/.

dx < T1l—c¢
e Formulation due to Goldston and Suriajaya:

Ay (x n ;) ~A(X)

For any integrable function f, if 0 < h < X/4, then

X 8h/X X
/X/2|f(x+h)—f(x)|2dx<2l)7< A /0 |f(X+ﬁx)—f(X)|2dxd5.

Theorem (Baluyot and C.)

Assume the Lindelof Hypothesis. If k > 3 is an integer and 0 < h < X,
then

2X 2
/ (Ak(x +h) - Ak(x)) dx < X*eh.
X
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e Tsang (1992): for some constant A
X 4
/ (A2(x))" dx ~ AXZ.
0

o Ivi¢ (1985):
X
/ (83(x))" dx < X+,
0

o Ivi¢ and Zhai(2010):
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The fourth moment of A,

Theorem (Baluyot and C.)
Assume the Lindelof Hypothesis. If k > 3 is an integer, then

2X a )
/ (Ak(x))" dx < X377t
X

.

e We expect the true order to be X3-% times some power of log X.
e The k = 3 case is unconditional, but weaker than the theorem of Ivié
(1985).
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The detection method of Heath-Brown and Tsang

Recall that S is the set of x € [X,2X] such that A, does not change
sign on [x, x + H]. Assuming LH and setting H = X' ~1/k=¢ we see

2X 2X
X1k o /X N /X sup [ A(x - h) — ()P dx

ox 1/2
< meas(S)*/? (/ |Ak(x)[* dx>

X

This gives there are at least > X7 ¢ disjoint subintervals of [X,2X]
of length X'~1/k=¢ with no sign changes.

The 2 — 1/k in the lower bound for the measure of S is why lvi¢ and
Zhai(2010) is insufficient for the theorem.







