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The Piltz divisor problem

• For an integer k ≥ 2, let dk(n) =
∑

n1···nk=n

1.

•
∑
n≤x

dk(n) = Res
s=1

(
ζk(s)x s

s

)
+∆k(x) = xPk(log x) + ∆k(x).

for some polynomial Pk of degree k − 1.
• The Piltz divisor problem is to determine the smallest αk such that

∆k(x) ≪ xαk+ε

for all ε > 0.
Titchmarsh conjectured αk = γk := 1

2 − 1
2k .



2/23

The Piltz divisor problem

• For an integer k ≥ 2, let dk(n) =
∑

n1···nk=n

1.

•
∑
n≤x

dk(n) = Res
s=1

(
ζk(s)x s

s

)
+∆k(x) = xPk(log x) + ∆k(x).

for some polynomial Pk of degree k − 1.

• The Piltz divisor problem is to determine the smallest αk such that

∆k(x) ≪ xαk+ε

for all ε > 0.
Titchmarsh conjectured αk = γk := 1

2 − 1
2k .



2/23

The Piltz divisor problem

• For an integer k ≥ 2, let dk(n) =
∑

n1···nk=n

1.

•
∑
n≤x

dk(n) = Res
s=1

(
ζk(s)x s

s

)
+∆k(x) = xPk(log x) + ∆k(x).

for some polynomial Pk of degree k − 1.
• The Piltz divisor problem is to determine the smallest αk such that

∆k(x) ≪ xαk+ε

for all ε > 0.
Titchmarsh conjectured αk = γk := 1

2 − 1
2k .



3/23

Progress on Dirichlet/Piltz Divisor Problem
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Size and fluctuations of ∆k(x)

• Soundararajan (2003), building on ideas of Hafner, has shown

∆k(x) = Ω
(
(x log x)

1
2−

1
2k (log log x)

k+1
2k (k2k/(k+1)−1)(log log log x)−

1
2−

k−1
4k

)
.

• Tong (1955) proved the existence of constants ak and bk such that if

|y | ≤ akX
1
2−

1
2k , then

∆k(x) = y for some x ∈
[
X ,X + bkX

1− 1
k

]
.

• In particular, ∆k(x) changes sign at least once in the interval

[X ,X + bkX
1− 1

k ]. Question: Is this best possible?
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Intervals with no sign changes of ∆k(x)

Let X be a large parameter.
• Tong (1955): ∆k(x) changes sign in [X ,X + bkX

1− 1
k ]

• Heath-Brown and Tsang (1994): For some constant c > 0, there are at
least ≫

√
X (logX )5 disjoint subintervals of [X , 2X ], each of length

c
√
X (logX )−5, such that |∆2(x)| ≫ x1/4 for all x in any of the

subintervals. In particular, ∆2(x) does not change sign in any of the
subintervals.

• Cao, Tanigawa, and Zhai(2016): For some constant c > 0, there are at
least ≫ X 1/2−ε disjoint subintervals of [X , 2X ], each of length X 1/2−ε,
such that |∆3(x)| ≥ cx1/3 for all x in any of the subintervals. In
particular, ∆3(x) does not change sign in any of the subintervals.
Assuming Lindelöf, there are at least ≫ X 1/3−ε of disjoint intervals of
length X 2/3−ε.
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Intervals with no sign changes of ∆k(x)

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let k ≥ 3 be an integer. There are

at least ≫ X
1

k(k−1)−ε disjoint subintervals of [X , 2X ], each of length

X 1− 1
k −ε, such that |∆k(x)| ≫ x

1
2−

1
2k for all x in any of the subintervals.

In particular, ∆k(x) does not change sign in any of the subintervals.

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis and let k ≥ 3 be an integer. There are

at least ≫ X
1

k(k−1)−ε disjoint subintervals of [X , 2X ], each of length

X 1− 1
k (logX )−k2−2, such that |∆k(x)| ≫ x

1
2−

1
2k for all x in any of the

subintervals. In particular, ∆k(x) does not change sign in any of the
subintervals.

Remark

For k = 3 in the first theorem we recover the length of disjoint
subintervals proved by Cao, Tanigawa, and Zhai(2016); however, we do
not recover the lower bound on the number of subintervals.
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Intervals with no sign changes
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The detection method of Heath-Brown and Tsang

Let S :=
{
x ∈ [X , 2X ] : |∆k(x)|2 > sup

0≤h≤H
|∆k(x + h)−∆k(x)|2

}
If

x ∈ S , then ∆k(x + h) has the same sign as ∆k(x) for all h ≤ H. We
use the definition of S and Cauchy-Schwarz to deduce that

∫ 2X

X

|∆k(x)|2 dx −
∫ 2X

X

sup
0≤h≤H

|∆k(x + h)−∆k(x)|2 dx

≤
∫
S

(
|∆k(x)|2 − sup

0≤h≤H
|∆k(x + h)−∆k(x)|2

)
dx

≤
∫
S

|∆k(x)|2 dx

≤ meas(S)1/2

(∫ 2X

X

|∆k(x)|4 dx

)1/2

To get a lower bound for meas(S), we need a lower bound for the second
moment of ∆k and upper bounds for the fourth moment of ∆k and the
variance of sums of dk(n) in short intervals.
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The second moment of ∆k

• Cramér (1922):

∫ X

0

(
∆2(x)

)2
dx ∼ A2X

3/2 for some constant A2.

• Tong (1956): If k ≥ 3 is an integer, then for some constant Ak ,∫ X

0

(
∆k(x)

)2
dx = AkX

2− 1
k + O

(
X

2− 3−4σk
2k(1−σk )−1+ε

)
,

where σk ≥ 1
2 satisfies∫ T

0

|ζ(σk + it)|2k dt ≪ T 1+ε.

In particular, the Lindelöf Hypothesis implies an asymptotic formula.
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The variance of sums of d2(n) in short intervals

• Jutila (1984): If X ε ≪ h ≤ 1
2

√
X , then∫ 2X

X

(
∆2(x + h)−∆2(x)

)2
dx ≪ Xh log3

(√
X

h

)
.

• Ivić (2009): If 1 ≪ h ≤ 1
2

√
X , then for some constants c0, . . . , c3,∫ 2X

X

(
∆2(x + h)−∆2(x)

)2
dx = Xh

3∑
j=0

cj log
j

(√
X

h

)
+O

(
X

1
2+εh2 + X 1+εh1/2

)
.

Note that this is an asymptotic formula for X ε ≪ h ≪ X
1
2−ε.
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The variance of sums of dk(n) in short intervals

Let k ≥ 3, and let σk ≥ 1
2 satisfy

∫ T

0

|ζ(σk + it)|2k dt ≪ T 1+ε.

• Ivić (2009): If 1
2 < σk < 1, 2σk − 1 < θ < 1, and X θ ≤ h ≪ X 1−ε,

then ∫ 2X

X

(
∆k(x + h)−∆k(x)

)2
dx ≪ X 1− 1

3 (θ−2σk+1)+εh2.

If σk = 1
2 and X ε ≪ h ≪ X 1−ε, then∫ 2X

X

(
∆k(x + h)−∆k(x)

)2
dx ≪ X 1+εh4/3.
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Cao,Tanigawa, and Zhai(2016)

• Unconditionally, for h ≤ X ,∫ 2X

X

(∆3(x + h)−∆3(x))
2dx ≪ X ε(Xh + X 4/3h1/3 + X 14/9)

• Assume LH. For h ≤ X∫ 2X

X

(∆k(x + h)−∆k(x))
2dx ≪ X ε(Xh + X 2−3/k).
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Lester (2016)

• Unconditionally, if 2 ≤ L ≪ X
1
12−ε, then for some constant C3,∫ 2X

X

(
∆3

(
x +

x2/3

L

)
−∆3(x)

)2

dx = C3
X 5/3

L
(log L)8

(
1 + O

(
1

log L

))
.

• Assume LH. If k ≥ 3 and 2 ≤ L ≪ X
1

k(k−1)−ε, then for some constant
Ck ,∫ 2X

X

(
∆k

(
x+

x1−
1
k

L

)
−∆k(x)

)2

dx = Ck
X 2− 1

k

L
(log L)k

2−1

(
1 + O

(
1

log L

))
.

• Essentially, when X 1− 1
k−1+ε ≪ h ≤ 1

2X
1− 1

k∫ 2X

X

(
∆k(x + h)−∆k(x)

)2
dx ∼ CXh(logX )k

2−1

.
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The variance of sums of dk(n) in short intervals

• Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If

h = X δ with 0 < δ < 1− 1
k fixed, then∫ 2X

X

(
∆k(x + h)−∆k(x)

)2
dx ∼ Pk(δ)Xh(logX )k

2−1,

where Pk(δ) is a (specific) piecewise polynomial function of δ of degree
k2 − 1.

• By examining the function field case, KRRR have found an interesting
connection between this variance and averages of coefficients of
characteristic polynomials of random matrices.

• This agrees with Lester’s theorem for 1− 1
k−1 < δ < 1− 1

k .
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Mean square of ∆k under LH

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If k ≥ 3 is an integer and 0 ≤ h ≤ X ,
then ∫ 2X

X

(
∆k(x + h)−∆k(x)

)2
dx ≪ X 1+εh.

Remark

Our result recovers Cao, Tanigawa, Zhai(2016) in the case of k = 3, and
improves on it for higher k .

• For h ≤ X∫ 2X

X

(∆k(x + h)−∆k(x))
2dx ≪ X ε(Xh + X 2−3/k).
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Mean square of ∆k under RH

We can use bounds for the moments of zeta due to Harper(2013).

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis. If k ≥ 3 is an integer and 0 ≤ h ≤ X ,
then ∫ 2X

X

(
∆k(x + h)−∆k(x)

)2
dx ≪ Xh logk

2

(
X

h

)
.

Remark

This bound is one factor of logX larger than the conjectured order.
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Selberg’s method

• Assume the LH. We use a method developed by Selberg in studying
primes in short intervals. Then, we apply a lemma of Saffari and
Vaughan.

• Apply Perron and then move the line of integration to Re(s) = 1
2 :

∆k(x) =
∑
n≤x

dk(n)− Res
s=1

(
ζk(s)x s

s

)
= lim

Y→∞

1

2πi

∫ 1
2+iY

1
2−iY

x s

s
ζk(s) ds

We may thus view ∆k(x) as a Fourier transform.
• Apply Plancherel’s theorem, make a change of variables:∫ ∞

0

∣∣∣∣∆k

(
x +

x

T

)
−∆k(x)

∣∣∣∣2 dxx2
=

1

π

∫ ∞

0

∣∣∣∣∣
(
(1 + 1

T )(
1
2+it) − 1

1
2 + it

)
ζk( 12 + it)

∣∣∣∣∣
2

dt ≪ 1

T 1−ε
.



17/23

Selberg’s method

• Assume the LH. We use a method developed by Selberg in studying
primes in short intervals. Then, we apply a lemma of Saffari and
Vaughan.
• Apply Perron and then move the line of integration to Re(s) = 1

2 :

∆k(x) =
∑
n≤x

dk(n)− Res
s=1

(
ζk(s)x s

s

)
= lim

Y→∞

1

2πi

∫ 1
2+iY

1
2−iY

x s

s
ζk(s) ds

We may thus view ∆k(x) as a Fourier transform.

• Apply Plancherel’s theorem, make a change of variables:∫ ∞

0

∣∣∣∣∆k

(
x +

x

T

)
−∆k(x)

∣∣∣∣2 dxx2
=

1

π

∫ ∞

0

∣∣∣∣∣
(
(1 + 1

T )(
1
2+it) − 1

1
2 + it

)
ζk( 12 + it)

∣∣∣∣∣
2

dt ≪ 1

T 1−ε
.



17/23

Selberg’s method

• Assume the LH. We use a method developed by Selberg in studying
primes in short intervals. Then, we apply a lemma of Saffari and
Vaughan.
• Apply Perron and then move the line of integration to Re(s) = 1

2 :

∆k(x) =
∑
n≤x

dk(n)− Res
s=1

(
ζk(s)x s

s

)
= lim

Y→∞

1

2πi

∫ 1
2+iY

1
2−iY

x s

s
ζk(s) ds

We may thus view ∆k(x) as a Fourier transform.
• Apply Plancherel’s theorem, make a change of variables:∫ ∞

0

∣∣∣∣∆k

(
x +

x

T

)
−∆k(x)

∣∣∣∣2 dxx2
=

1

π

∫ ∞

0

∣∣∣∣∣
(
(1 + 1

T )(
1
2+it) − 1

1
2 + it

)
ζk( 12 + it)

∣∣∣∣∣
2

dt ≪ 1

T 1−ε
.



18/23

A lemma of Saffari and Vaughan

∫ 2X

X

∣∣∣∣∆k

(
x +

x

T

)
−∆k(x)

∣∣∣∣2 dx ≪ X 2

T 1−ε

• Formulation due to Goldston and Suriajaya:

Lemma (Saffari and Vaughan(1977))

For any integrable function f, if 0 ≤ h ≤ X/4, then∫ X

X/2

|f (x + h)− f (x)|2 dx ≤ 2X

h

∫ 8h/X

0

∫ X

0

|f (x + βx)− f (x)|2 dx dβ.

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If k ≥ 3 is an integer and 0 ≤ h ≤ X ,
then ∫ 2X

X

(
∆k(x + h)−∆k(x)

)2
dx ≪ X 1+εh.
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The fourth moment of ∆k

• Tsang (1992): for some constant A∫ X

0

(
∆2(x)

)4
dx ∼ AX 2.

• Ivić (1985): ∫ X

0

(
∆3(x)

)4
dx ≪ X

235
96 +ε.

• Ivić and Zhai(2010):∫ 2X

X

(∆k)
4(x)dx ≪ X ε(X 3−1/k + X (10k−11)/(2k+1)).
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The fourth moment of ∆k

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If k ≥ 3 is an integer, then∫ 2X

X

(
∆k(x)

)4
dx ≪ X 3− 1

k−1+ε.

Remark

• We expect the true order to be X 3− 2
k times some power of logX .

• The k = 3 case is unconditional, but weaker than the theorem of Ivić
(1985).
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The detection method of Heath-Brown and Tsang

Recall that S is the set of x ∈ [X , 2X ] such that ∆k does not change
sign on [x , x + H].

Assuming LH and setting H = X 1−1/k−ε, we see

X 2−1/k ≪
∫ 2X

X

|∆k(x)|2 dx −
∫ 2X

X

sup
0≤h≤H

|∆k(x + h)−∆k(x)|2 dx

≤ meas(S)1/2

(∫ 2X

X

|∆k(x)|4 dx

)1/2

This gives there are at least ≫ X
1

k(k−1)−ε disjoint subintervals of [X , 2X ]
of length X 1−1/k−ε with no sign changes.

Remark

The 2− 1/k in the lower bound for the measure of S is why Ivić and
Zhai(2010) is insufficient for the theorem.
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Thank you!


