Sign changes of the error term in the Piltz divisor problem

Cruz Castillo University of Illinois at Urbana-Champaign

joint work with Siegfred Baluyot

UIUC Number Theory Seminar 2 May 2023

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ○ 1/23</p>

The Piltz divisor problem

• For an integer
$$k \ge 2$$
, let $d_k(n) = \sum_{n_1 \cdots n_k = n} 1$.

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 2/23

The Piltz divisor problem

• For an integer
$$k \ge 2$$
, let $d_k(n) = \sum_{\substack{n_1 \cdots n_k = n}} 1$.
• $\sum_{n \le x} d_k(n) = \operatorname{Res}_{s=1} \left(\frac{\zeta^k(s) x^s}{s} \right) + \Delta_k(x) = x P_k(\log x) + \Delta_k(x)$.
for some polynomial P_k of degree $k = 1$

< □ <
 < □ <
 < □ <
 < □ <
 < ○
 < 2/23

olynoinial F_k ol uegi n IOI SOINC

The Piltz divisor problem

• For an integer
$$k \ge 2$$
, let $d_k(n) = \sum_{n_1 \cdots n_k = n} 1$.

•
$$\sum_{n\leq x} d_k(n) = \operatorname{Res}_{s=1}\left(\frac{\zeta^k(s)x^s}{s}\right) + \Delta_k(x) = xP_k(\log x) + \Delta_k(x).$$

for some polynomial P_k of degree k - 1.

• The Piltz divisor problem is to determine the smallest α_k such that

$$\Delta_k(x) \ll x^{\alpha_k + \varepsilon}$$

for all $\varepsilon > 0$. Titchmarsh conjectured $\alpha_k = \gamma_k := \frac{1}{2} - \frac{1}{2k}$.

Progress on Dirichlet/Piltz Divisor Problem

Who(Year)	Result
Dirichlet(1849)	$\alpha_2 \leq \frac{1}{2}$
Huxley(2003)	$\alpha_2 \leq \frac{131}{416} \approx .3149$
Kolesnik(1981)	$\alpha_3 \le \frac{43}{96} \approx .4479$
lvić(1980's)	$\label{eq:ak} \alpha_k \leq \frac{3}{4} - \frac{1}{k},$ for $3 \leq k \leq 8.$
Richert(1960)	$\alpha_k \le 1 - ck^{-2/3}$
Ford(2002)	$\label{eq:ak} \begin{split} \alpha_k &\leq 1 \ -\frac{1}{3} \bigg(\frac{2}{(4.45)} \bigg)^{\frac{2}{3}} \leq 1 - \ .196 k^{-\frac{2}{3}}, \\ \text{for large k.} \end{split}$
Bellotti and Yang(2023)	$\alpha_k \leq 1-1.889 k^{-\frac{2}{3}} \text{,} \label{eq:ak}$ for large k.

Size and fluctuations of $\Delta_k(x)$

• Soundararajan (2003), building on ideas of Hafner, has shown

$$\Delta_k(x) = \Omega\Big((x \log x)^{\frac{1}{2} - \frac{1}{2k}} (\log \log x)^{\frac{k+1}{2k}(k^{2k/(k+1)} - 1)} (\log \log \log x)^{-\frac{1}{2} - \frac{k-1}{4k}}\Big).$$

・ ・ ・ ● ・ ・ = ・ = ・ = ・ の へ · 4/23

Size and fluctuations of $\Delta_k(x)$

• Soundararajan (2003), building on ideas of Hafner, has shown

$$\Delta_k(x) = \Omega\Big((x \log x)^{\frac{1}{2} - \frac{1}{2k}} (\log \log x)^{\frac{k+1}{2k}(k^{2k/(k+1)} - 1)} (\log \log \log x)^{-\frac{1}{2} - \frac{k-1}{4k}}\Big).$$

• Tong (1955) proved the existence of constants a_k and b_k such that if $|y| \le a_k X^{\frac{1}{2} - \frac{1}{2k}}$, then

$$\Delta_k(x) = y$$
 for some $x \in \left[X, X + b_k X^{1-rac{1}{k}}
ight].$

• Soundararajan (2003), building on ideas of Hafner, has shown

$$\Delta_k(x) = \Omega\Big((x \log x)^{\frac{1}{2} - \frac{1}{2k}} (\log \log x)^{\frac{k+1}{2k}(k^{2k/(k+1)} - 1)} (\log \log \log x)^{-\frac{1}{2} - \frac{k-1}{4k}}\Big).$$

• Tong (1955) proved the existence of constants a_k and b_k such that if $|y| \leq a_k X^{\frac{1}{2}-\frac{1}{2k}}$, then

$$\Delta_k(x) = y$$
 for some $x \in [X, X + b_k X^{1-rac{1}{k}}]$.

• In particular, $\Delta_k(x)$ changes sign at least once in the interval $[X, X + b_k X^{1-\frac{1}{k}}]$. Question: Is this best possible?

Let X be a large parameter.

• Tong (1955): $\Delta_k(x)$ changes sign in $[X, X + b_k X^{1-\frac{1}{k}}]$

• Heath-Brown and Tsang (1994): For some constant c > 0, there are at least $\gg \sqrt{X}(\log X)^5$ disjoint subintervals of [X, 2X], each of length $c\sqrt{X}(\log X)^{-5}$, such that $|\Delta_2(x)| \gg x^{1/4}$ for all x in any of the subintervals. In particular, $\Delta_2(x)$ does not change sign in any of the subintervals.

・ロ ・ ・ 回 ・ ・ ヨ ・ ヨ ・ シ へ や 5/23

Let X be a large parameter.

• Tong (1955): $\Delta_k(x)$ changes sign in $[X, X + b_k X^{1-\frac{1}{k}}]$

• Heath-Brown and Tsang (1994): For some constant c > 0, there are at least $\gg \sqrt{X}(\log X)^5$ disjoint subintervals of [X, 2X], each of length $c\sqrt{X}(\log X)^{-5}$, such that $|\Delta_2(x)| \gg x^{1/4}$ for all x in any of the subintervals. In particular, $\Delta_2(x)$ does not change sign in any of the subintervals.

• Cao, Tanigawa, and Zhai(2016): For some constant c > 0, there are at least $\gg X^{1/2-\varepsilon}$ disjoint subintervals of [X, 2X], each of length $X^{1/2-\varepsilon}$, such that $|\Delta_3(x)| \ge cx^{1/3}$ for all x in any of the subintervals. In particular, $\Delta_3(x)$ does not change sign in any of the subintervals. Assuming Lindelöf, there are at least $\gg X^{1/3-\varepsilon}$ of disjoint intervals of length $X^{2/3-\varepsilon}$.

Intervals with no sign changes of $\Delta_k(x)$

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let $k \ge 3$ be an integer. There are at least $\gg X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of [X, 2X], each of length $X^{1-\frac{1}{k}-\varepsilon}$, such that $|\Delta_k(x)| \gg x^{\frac{1}{2}-\frac{1}{2k}}$ for all x in any of the subintervals. In particular, $\Delta_k(x)$ does not change sign in any of the subintervals.

・ロト・日本 (日)・ (日)・ (日)・ 日 のへで 6/23

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let $k \ge 3$ be an integer. There are at least $\gg X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of [X, 2X], each of length $X^{1-\frac{1}{k}-\varepsilon}$, such that $|\Delta_k(x)| \gg x^{\frac{1}{2}-\frac{1}{2k}}$ for all x in any of the subintervals. In particular, $\Delta_k(x)$ does not change sign in any of the subintervals.

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis and let $k \geq 3$ be an integer. There are at least $\gg X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of [X, 2X], each of length $X^{1-\frac{1}{k}}(\log X)^{-k^2-2}$, such that $|\Delta_k(x)| \gg x^{\frac{1}{2}-\frac{1}{2k}}$ for all x in any of the subintervals. In particular, $\Delta_k(x)$ does not change sign in any of the subintervals.

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis and let $k \ge 3$ be an integer. There are at least $\gg X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of [X, 2X], each of length $X^{1-\frac{1}{k}-\varepsilon}$, such that $|\Delta_k(x)| \gg x^{\frac{1}{2}-\frac{1}{2k}}$ for all x in any of the subintervals. In particular, $\Delta_k(x)$ does not change sign in any of the subintervals.

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis and let $k \geq 3$ be an integer. There are at least $\gg X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of [X, 2X], each of length $X^{1-\frac{1}{k}}(\log X)^{-k^2-2}$, such that $|\Delta_k(x)| \gg x^{\frac{1}{2}-\frac{1}{2k}}$ for all x in any of the subintervals. In particular, $\Delta_k(x)$ does not change sign in any of the subintervals.

Remark

For k = 3 in the first theorem we recover the length of disjoint subintervals proved by Cao, Tanigawa, and Zhai(2016); however, we do not recover the lower bound on the number of subintervals.

Intervals with no sign changes

Who(year)	Assumption	k	н	Sign change
Tong(1955)	None	≥ 2	$X^{1-\frac{1}{k}}$	Yes
Heath- Brown and Tsang(1994)	None	= 2	$\sqrt{X} (\log X)^{-5}$	No
Cao, Tanigawa and Zhai(2016)	None	= 3	$X^{\frac{1}{2}-\varepsilon}$	No
CTZ(2016)	LH	= 3	$X^{\frac{2}{3}-\varepsilon}$	No
Baluyot and C.(2023)	LH	≥ 3	$X^{1-\frac{1}{k}-\varepsilon}$	No
BC(2023)	RH	≥ 3	$X^{1-\frac{1}{k}}(\log X)^{-k^2-2}$	No

Let
$$S := \left\{ x \in [X, 2X] : |\Delta_k(x)|^2 > \sup_{0 \le h \le H} |\Delta_k(x+h) - \Delta_k(x)|^2 \right\}$$
 If $x \in S$, then $\Delta_k(x+h)$ has the same sign as $\Delta_k(x)$ for all $h \le H$. We use the definition of S and Cauchy-Schwarz to deduce that

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ Ξ り < ○ 8/23

Let
$$S := \left\{ x \in [X, 2X] : |\Delta_k(x)|^2 > \sup_{0 \le h \le H} |\Delta_k(x+h) - \Delta_k(x)|^2 \right\}$$
 If $x \in S$, then $\Delta_k(x+h)$ has the same sign as $\Delta_k(x)$ for all $h \le H$. We use the definition of S and Cauchy-Schwarz to deduce that

$$\int_{X}^{2X} |\Delta_{k}(x)|^{2} dx - \int_{X}^{2X} \sup_{0 \le h \le H} |\Delta_{k}(x+h) - \Delta_{k}(x)|^{2} dx$$

$$\leq \int_{S} \left(|\Delta_{k}(x)|^{2} - \sup_{0 \le h \le H} |\Delta_{k}(x+h) - \Delta_{k}(x)|^{2} \right) dx$$

$$\leq \int_{S} |\Delta_{k}(x)|^{2} dx$$

$$\leq \operatorname{meas}(S)^{1/2} \left(\int_{X}^{2X} |\Delta_{k}(x)|^{4} dx \right)^{1/2}$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ _{8/23}

Let
$$S := \left\{ x \in [X, 2X] : |\Delta_k(x)|^2 > \sup_{0 \le h \le H} |\Delta_k(x+h) - \Delta_k(x)|^2 \right\}$$
 If $x \in S$, then $\Delta_k(x+h)$ has the same sign as $\Delta_k(x)$ for all $h \le H$. We use the definition of S and Cauchy-Schwarz to deduce that

$$\begin{split} &\int_{X}^{2X} |\Delta_{k}(x)|^{2} dx - \int_{X}^{2X} \sup_{0 \leq h \leq H} |\Delta_{k}(x+h) - \Delta_{k}(x)|^{2} dx \\ &\leq \int_{S} \left(|\Delta_{k}(x)|^{2} - \sup_{0 \leq h \leq H} |\Delta_{k}(x+h) - \Delta_{k}(x)|^{2} \right) dx \\ &\leq \int_{S} |\Delta_{k}(x)|^{2} dx \\ &\leq \max(S)^{1/2} \left(\int_{X}^{2X} |\Delta_{k}(x)|^{4} dx \right)^{1/2} \end{split}$$

To get a lower bound for meas(S), we need a lower bound for the second moment of Δ_k and upper bounds for the fourth moment of Δ_k and the variance of sums of $d_k(n)$ in short intervals.

• Cramér (1922): $\int_0^X (\Delta_2(x))^2 dx \sim A_2 X^{3/2}$ for some constant A_2 .

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 9/23

- Cramér (1922): $\int_0^X (\Delta_2(x))^2 dx \sim A_2 X^{3/2}$ for some constant A_2 .
 - Tong (1956): If $k \ge 3$ is an integer, then for some constant A_k ,

$$\int_0^X (\Delta_k(x))^2 dx = A_k X^{2-\frac{1}{k}} + O\left(X^{2-\frac{3-4\sigma_k}{2k(1-\sigma_k)-1}+\varepsilon}\right),$$

where $\sigma_k \geq \frac{1}{2}$ satisfies

$$\int_0^T |\zeta(\sigma_k+it)|^{2k} dt \ll T^{1+\varepsilon}.$$

In particular, the Lindelöf Hypothesis implies an asymptotic formula.

The variance of sums of $d_2(n)$ in short intervals

• Jutila (1984): If $X^{\varepsilon} \ll h \leq \frac{1}{2}\sqrt{X}$, then

$$\int_{X}^{2X} \left(\Delta_2(x+h) - \Delta_2(x) \right)^2 dx \ll Xh \log^3 \left(\frac{\sqrt{X}}{h} \right).$$

The variance of sums of $d_2(n)$ in short intervals

• Jutila (1984): If $X^{\varepsilon} \ll h \leq \frac{1}{2}\sqrt{X}$, then

$$\int_X^{2X} \left(\Delta_2(x+h) - \Delta_2(x) \right)^2 dx \ll Xh \log^3 \left(\frac{\sqrt{X}}{h} \right).$$

• lvić (2009): If $1 \ll h \leq \frac{1}{2}\sqrt{X}$, then for some constants c_0, \ldots, c_3 ,

$$\int_{X}^{2X} \left(\Delta_2(x+h) - \Delta_2(x) \right)^2 dx = Xh \sum_{j=0}^{3} c_j \log^j \left(\frac{\sqrt{X}}{h} \right) \\ + O\left(X^{\frac{1}{2} + \varepsilon} h^2 + X^{1+\varepsilon} h^{1/2} \right).$$

Note that this is an asymptotic formula for $X^{\varepsilon} \ll h \ll X^{\frac{1}{2}-\varepsilon}$.

Let
$$k \ge 3$$
, and let $\sigma_k \ge \frac{1}{2}$ satisfy $\int_0^T |\zeta(\sigma_k + it)|^{2k} dt \ll T^{1+\varepsilon}$.
• lvić (2009): If $\frac{1}{2} < \sigma_k < 1$, $2\sigma_k - 1 < \theta < 1$, and $X^{\theta} \le h \ll X^{1-\varepsilon}$.

then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \ll X^{1-\frac{1}{3}(\theta-2\sigma_k+1)+\varepsilon} h^2.$$

◆□ → ◆ ● → ◆ ■ → ■ ・ ● ● ○ ○ 11/23

Let
$$k \geq 3$$
, and let $\sigma_k \geq \frac{1}{2}$ satisfy $\int_0^T |\zeta(\sigma_k + it)|^{2k} dt \ll T^{1+\varepsilon}$.

• Ivić (2009): If $\frac{1}{2} < \sigma_k < 1$, $2\sigma_k - 1 < \theta < 1$, and $X^{\theta} \le h \ll X^{1-\varepsilon}$, then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \ll X^{1-\frac{1}{3}(\theta-2\sigma_k+1)+\varepsilon} h^2.$$

If $\sigma_k = rac{1}{2}$ and $X^{arepsilon} \ll h \ll X^{1-arepsilon}$, then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \ll X^{1+\varepsilon} h^{4/3}.$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 11/23

Cao, Tanigawa, and Zhai(2016)

• Unconditionally, for $h \leq X$,

$$\int_{X}^{2X} (\Delta_3(x+h) - \Delta_3(x))^2 dx \ll X^{\varepsilon} (Xh + X^{4/3}h^{1/3} + X^{14/9})$$

Cao, Tanigawa, and Zhai (2016)

• Unconditionally, for $h \leq X$,

$$\int_{X}^{2X} (\Delta_3(x+h) - \Delta_3(x))^2 dx \ll X^{\varepsilon} (Xh + X^{4/3}h^{1/3} + X^{14/9})$$

• Assume LH. For $h \leq X$

$$\int_X^{2X} (\Delta_k(x+h) - \Delta_k(x))^2 dx \ll X^{\varepsilon} (Xh + X^{2-3/k}).$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q (? 12/23)

Lester (2016)

• Unconditionally, if $2 \le L \ll X^{\frac{1}{12}-arepsilon}$, then for some constant C_3 ,

$$\int_{X}^{2X} \left(\Delta_3 \left(x + \frac{x^{2/3}}{L} \right) - \Delta_3 (x) \right)^2 dx = C_3 \frac{X^{5/3}}{L} (\log L)^8 \left(1 + O\left(\frac{1}{\log L}\right) \right).$$

Lester (2016)

• Unconditionally, if $2 \le L \ll X^{\frac{1}{12}-\varepsilon}$, then for some constant C_3 ,

$$\int_{X}^{2X} \left(\Delta_3 \left(x + \frac{x^{2/3}}{L} \right) - \Delta_3 (x) \right)^2 dx = C_3 \frac{X^{5/3}}{L} (\log L)^8 \left(1 + O\left(\frac{1}{\log L}\right) \right).$$

• Assume LH. If $k \ge 3$ and $2 \le L \ll X^{\frac{1}{k(k-1)}-\varepsilon}$, then for some constant C_k ,

$$\int_{X}^{2X} \left(\Delta_k \left(x + \frac{x^{1-\frac{1}{k}}}{L} \right) - \Delta_k(x) \right)^2 dx = C_k \frac{X^{2-\frac{1}{k}}}{L} (\log L)^{k^2 - 1} \left(1 + O\left(\frac{1}{\log L}\right) \right)$$

Lester (2016)

• Unconditionally, if $2 \le L \ll X^{\frac{1}{12}-\varepsilon}$, then for some constant C_3 ,

$$\int_{X}^{2X} \left(\Delta_3 \left(x + \frac{x^{2/3}}{L} \right) - \Delta_3(x) \right)^2 dx = C_3 \frac{X^{5/3}}{L} (\log L)^8 \left(1 + O\left(\frac{1}{\log L}\right) \right).$$

• Assume LH. If $k \ge 3$ and $2 \le L \ll X^{\frac{1}{k(k-1)}-\varepsilon}$, then for some constant C_k ,

$$\int_{X}^{2X} \left(\Delta_k \left(x + \frac{x^{1-\frac{1}{k}}}{L} \right) - \Delta_k(x) \right)^2 dx = C_k \frac{X^{2-\frac{1}{k}}}{L} (\log L)^{k^2 - 1} \left(1 + O\left(\frac{1}{\log L}\right) \right)$$

• Essentially, when $X^{1-rac{1}{k-1}+arepsilon}\ll h\leq rac{1}{2}X^{1-rac{1}{k}}$

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \sim CXh(\log X)^{k^2 - 1}$$

The variance of sums of $d_k(n)$ in short intervals

• Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If $h = X^{\delta}$ with $0 < \delta < 1 - \frac{1}{k}$ fixed, then

$$\int_{X}^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \sim \mathcal{P}_k(\delta) X h(\log X)^{k^2-1},$$

where $\mathcal{P}_k(\delta)$ is a (specific) piecewise polynomial function of δ of degree $k^2 - 1$.

• Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If $h = X^{\delta}$ with $0 < \delta < 1 - \frac{1}{k}$ fixed, then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \sim \mathcal{P}_k(\delta) X h(\log X)^{k^2-1},$$

where $\mathcal{P}_k(\delta)$ is a (specific) piecewise polynomial function of δ of degree $k^2 - 1$.

• By examining the function field case, KRRR have found an interesting connection between this variance and averages of coefficients of characteristic polynomials of random matrices.

• Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If $h = X^{\delta}$ with $0 < \delta < 1 - \frac{1}{k}$ fixed, then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \sim \mathcal{P}_k(\delta) X h(\log X)^{k^2 - 1},$$

where $\mathcal{P}_k(\delta)$ is a (specific) piecewise polynomial function of δ of degree $k^2 - 1$.

• By examining the function field case, KRRR have found an interesting connection between this variance and averages of coefficients of characteristic polynomials of random matrices.

• This agrees with Lester's theorem for $1 - \frac{1}{k-1} < \delta < 1 - \frac{1}{k}$.

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If $k \ge 3$ is an integer and $0 \le h \le X$, then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \ll X^{1+\varepsilon} h$$

Remark

Our result recovers Cao, Tanigawa, Zhai(2016) in the case of k = 3, and improves on it for higher k.

• For $h \leq X$

$$\int_X^{2X} (\Delta_k(x+h) - \Delta_k(x))^2 dx \ll X^{\varepsilon} (Xh + X^{2-3/k}).$$

Mean square of Δ_k under RH

We can use bounds for the moments of zeta due to Harper(2013).

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis. If $k \ge 3$ is an integer and $0 \le h \le X$, then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \ll Xh \log^{k^2} \left(\frac{X}{h} \right).$$

Mean square of Δ_k under RH

We can use bounds for the moments of zeta due to Harper(2013).

Theorem (Baluyot and C.)

Assume the Riemann Hypothesis. If $k \ge 3$ is an integer and $0 \le h \le X$, then

$$\int_X^{2\Lambda} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \ll Xh \log^{k^2} \left(\frac{X}{h} \right).$$

Remark

This bound is one factor of $\log X$ larger than the conjectured order.

• Conjecture (Keating, Rodgers, Roditty-Gershon, and Rudnick, 2018): If $h = X^{\delta}$ with $0 < \delta < 1 - \frac{1}{k}$ fixed, then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \sim \mathcal{P}_k(\delta) X h(\log X)^{k^2-1},$$

Selberg's method

• Assume the LH. We use a method developed by Selberg in studying primes in short intervals. Then, we apply a lemma of Saffari and Vaughan.

Selberg's method

• Assume the LH. We use a method developed by Selberg in studying primes in short intervals. Then, we apply a lemma of Saffari and Vaughan.

• Apply Perron and then move the line of integration to $\operatorname{Re}(s) = \frac{1}{2}$:

$$\Delta_k(x) = \sum_{n \le x} d_k(n) - \operatorname{Res}_{s=1}\left(\frac{\zeta^k(s)x^s}{s}\right) = \lim_{Y \to \infty} \frac{1}{2\pi i} \int_{\frac{1}{2} - iY}^{\frac{1}{2} + iY} \frac{x^s}{s} \zeta^k(s) \, ds$$

We may thus view $\Delta_k(x)$ as a Fourier transform.

Selberg's method

• Assume the LH. We use a method developed by Selberg in studying primes in short intervals. Then, we apply a lemma of Saffari and Vaughan.

• Apply Perron and then move the line of integration to $\operatorname{Re}(s) = \frac{1}{2}$:

$$\Delta_k(x) = \sum_{n \le x} d_k(n) - \operatorname{Res}_{s=1}\left(\frac{\zeta^k(s)x^s}{s}\right) = \lim_{Y \to \infty} \frac{1}{2\pi i} \int_{\frac{1}{2} - iY}^{\frac{1}{2} + iY} \frac{x^s}{s} \zeta^k(s) \, ds$$

We may thus view $\Delta_k(x)$ as a Fourier transform.

• Apply Plancherel's theorem, make a change of variables:

$$\begin{split} &\int_0^\infty \left| \Delta_k \left(x + \frac{x}{T} \right) - \Delta_k(x) \right|^2 \frac{dx}{x^2} \\ &= \frac{1}{\pi} \int_0^\infty \left| \left(\frac{(1 + \frac{1}{T})^{(\frac{1}{2} + it)} - 1}{\frac{1}{2} + it} \right) \zeta^k(\frac{1}{2} + it) \right|^2 dt \ll \frac{1}{T^{1 - \varepsilon}} \end{split}$$

A lemma of Saffari and Vaughan

$$\int_{X}^{2X} \left| \Delta_k \left(x + \frac{x}{T} \right) - \Delta_k(x) \right|^2 dx \ll \frac{X^2}{T^{1-\varepsilon}}$$

$$\int_{X}^{2X} \left| \Delta_k \left(x + \frac{x}{T} \right) - \Delta_k(x) \right|^2 dx \ll \frac{X^2}{T^{1-\varepsilon}}$$

• Formulation due to Goldston and Suriajaya:

Lemma (Saffari and Vaughan(1977))

For any integrable function f, if $0 \le h \le X/4$, then

$$\int_{X/2}^{X} |f(x+h) - f(x)|^2 \, dx \leq \frac{2X}{h} \int_0^{8h/X} \int_0^X |f(x+\beta x) - f(x)|^2 \, dx \, d\beta.$$

$$\int_{X}^{2X} \left| \Delta_k \left(x + \frac{x}{T} \right) - \Delta_k(x) \right|^2 dx \ll \frac{X^2}{T^{1-\varepsilon}}$$

• Formulation due to Goldston and Suriajaya:

Lemma (Saffari and Vaughan(1977))

For any integrable function f, if $0 \le h \le X/4$, then

$$\int_{X/2}^X |f(x+h) - f(x)|^2 \, dx \leq \frac{2X}{h} \int_0^{8h/X} \int_0^X |f(x+\beta x) - f(x)|^2 \, dx \, d\beta.$$

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If $k \ge 3$ is an integer and $0 \le h \le X$, then

$$\int_X^{2X} \left(\Delta_k(x+h) - \Delta_k(x) \right)^2 dx \ll X^{1+\varepsilon} h.$$

The fourth moment of Δ_k

• Tsang (1992): for some constant A

$$\int_0^X \bigl(\Delta_2(x) \bigr)^4 \, dx \sim A X^2.$$

The fourth moment of Δ_k

• Tsang (1992): for some constant A

$$\int_0^X (\Delta_2(x))^4 \, dx \sim AX^2.$$

• lvić (1985):

$$\int_0^X (\Delta_3(x))^4 dx \ll X^{\frac{235}{96}+\varepsilon}.$$

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ → ⊃ < ♡ 19/23

The fourth moment of Δ_k

• Tsang (1992): for some constant A

$$\int_0^X (\Delta_2(x))^4 \, dx \sim AX^2.$$

• lvić (1985):

$$\int_0^X (\Delta_3(x))^4 dx \ll X^{\frac{235}{96}+\varepsilon}.$$

• Ivić and Zhai(2010):

$$\int_{X}^{2X} (\Delta_k)^4(x) dx \ll X^{\varepsilon} (X^{3-1/k} + X^{(10k-11)/(2k+1)}).$$

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If $k \ge 3$ is an integer, then

$$\int_X^{2X} (\Delta_k(x))^4 dx \ll X^{3-\frac{1}{k-1}+\varepsilon}.$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ Q (20/23)

Theorem (Baluyot and C.)

Assume the Lindelöf Hypothesis. If $k \ge 3$ is an integer, then

$$\int_X^{2X} (\Delta_k(x))^4 dx \ll X^{3-\frac{1}{k-1}+\varepsilon}.$$

Remark

We expect the true order to be X^{3-²/_k} times some power of log X.
The k = 3 case is unconditional, but weaker than the theorem of lvić (1985).

Recall that S is the set of $x \in [X, 2X]$ such that Δ_k does not change sign on [x, x + H].

Recall that S is the set of $x \in [X, 2X]$ such that Δ_k does not change sign on [x, x + H]. Assuming LH and setting $H = X^{1-1/k-\varepsilon}$, we see

$$\begin{split} X^{2-1/k} \ll \int_{X}^{2X} |\Delta_k(x)|^2 \, dx &- \int_{X}^{2X} \sup_{0 \le h \le H} |\Delta_k(x+h) - \Delta_k(x)|^2 \, dx \\ & \le \mathsf{meas}(S)^{1/2} \Bigg(\int_{X}^{2X} |\Delta_k(x)|^4 \, dx \Bigg)^{1/2} \end{split}$$

Recall that S is the set of $x \in [X, 2X]$ such that Δ_k does not change sign on [x, x + H]. Assuming LH and setting $H = X^{1-1/k-\varepsilon}$, we see

$$\begin{split} X^{2-1/k} \ll \int_{X}^{2X} |\Delta_k(x)|^2 \, dx &- \int_{X}^{2X} \sup_{0 \le h \le H} |\Delta_k(x+h) - \Delta_k(x)|^2 \, dx \\ & \le \mathsf{meas}(S)^{1/2} \Bigg(\int_{X}^{2X} |\Delta_k(x)|^4 \, dx \Bigg)^{1/2} \end{split}$$

This gives there are at least $\gg X^{\frac{1}{k(k-1)}-\varepsilon}$ disjoint subintervals of [X, 2X] of length $X^{1-1/k-\varepsilon}$ with no sign changes.

Remark

The 2-1/k in the lower bound for the measure of S is why lvić and Zhai(2010) is insufficient for the theorem.

Thank you!

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ? 22/23